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A Construction of variables and samples

A list of the journals included in the database along, with the year of earliest article from
that journal can be found at the following URL: http://yaoli.people.ust.hk/HLM_
Annex1.pdf

A.1 Sources of data

Web of Science (previously called Thomson Reuters’ ISI Web of Knowledge.)

We use the WOS to record citations (the dependent variable), the author lists to obtain
coauthorship links, and to find the affiliations of authors. The affiliations allow us to construct
ties variables from career histories and to measure geographic proximity. The WOS provides a
record per each article published in the journals covered in the database. The record provides
data on the title of the article, the journal in which it was published, the year of publication, the
authors, the affiliation of the authors, and the cited articles.

From WOS we select all 255 journals included in the category “Mathematics” in 2009. Our
database covers all the articles published in these journals in the period 1975–2009. However,
for a large number of journals abstracting and indexing of articles started later than 1975. With
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these limitations, the database contains information about 339,613 articles. A shortcoming
of WOS is that it does not provide the affiliation for a substantial number of authors. The
WOS provides affiliations for 69% of the author-article combinations. Following procedures
described in A.3 we raise the fraction of affiliation identifications to 84%.

Academic genealogy data

The second main database used by this paper is the Mathematics Genealogy Project (MGP).
The MGP records the doctoral degrees awarded in mathematics since the 14th century. The
MGP provides the university and year in which each degree recipient completed their Ph.D.,
as well as the names of their doctoral advisors. We merged this data set with the citing authors
and cited authors in our database. The MGP is not an exhaustive list of all mathematicians but
we were able to match the records by author for around 44% of records.

Table A.1: MGP vs Non-MGP authors

Author Career duration #Institutions USA(%) #Coauthors Productivity
MGP 5.8 2.0 31.5 4.0 2.3

(6.6) (1.3) (46.5) (5.2) (7.5)
Non-MGP 5.1 1.9 22.7 3.7 1.9

(6.1) (1.3) (41.9) (5.1) (7.0)
Note: Career duration is the difference between the last year and the first year in which the
author appears in the database. USA reports the percentage of authors affiliated to a US univer-
sity. Productivity is computed dividing the total citations received by the author by her career
duration. Standard deviations in parentheses.

The MGP data are central to the analysis conducted here because they permit the construc-
tion of detailed educational ties that are pre-determined at the time the authors’ careers begin.
However, a natural concern is that these authors were selected for inclusion in the data set based
on special characteristics. Table A.1 compares MGP authors with other authors on several rel-
evant dimensions. The MGP authors have longer careers: the period over which they publish
averages eight months more than non-MGP authors. Both types of authors work at two insti-
tutions on average and have four co-authors. The MGP authors receive on average 0.4 more
citations per year but there is huge variation in productivity within both groups. In sum, MGP
authors tend to be more active and prominent but the between-group differences seem small
relative to intra-group variation. The most salient difference is that US-based mathematicians
seem over-represented in the MGP. To the extent that mathematicians at US departments have
different citation patterns, this will be more heavily weighted in the MGP sample. We address
this in our empirical analysis by estimating distinct geography and ties effects for US-residents.

Mathematics subject classification data

We used Zentralblatt MATH (zbMATH) to obtain the Mathematics Subject Classification
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(MSC) for the articles in our sample.1 The MSC is a 5-digit classification scheme maintained by
Mathematical Reviews and zbMATH which is used to categorize items in mathematics (broadly
defined). We focus on the 3-digit codes (two numerical and one letter), of which there are 422
in the year 2000 revision. We also use 5-digit codes, which gives extra detail (2175 fields). An
example of a 3-digit code is 15A, “basic linear algebra.” Within that “inequalities involving
eigenvalues and eigenvectors” is a 5-digit code. The drawback of using the 5-digit codes is a
massive reduction in the estimating sample (which we explain in section B of this Appendix).

Geographic data

We consider three geography variables, distance, borders, and language difference. Each
variable is expressed such that a large value indicates greater separation. The national border
dummy takes the value of 1 if none of the authors of the citing papers are based in the same
country as any of the cited authors. The language dummy is based on the official language
of the country hosting each authors’ institution, which need not be the native language of the
author in question.

We extracted the latitude and longitude information for all top 1000 institutions from Google
Maps, enabling construction of distances between each institution pair. We code the distance of
authors at the same institution as zero. Much of the prior work uses coarse measures of location
such as residing in the same metropolitan area. Even Belenzon and Schankerman (2013), who
measure intercity distances, cannot calculate decay in citation propensities within cities. For
example, within the Boston metro area, the distance between Harvard and MIT is only 3km but
the distance of MIT to Brandeis University is 14km. This permits us to estimate the profile of
information decay non-parametrically over fine and broad scales.

Using publications to track author locations over time, we calculate distances (and other
measures of geographic separation) at the time the citing article is written. Past work using
patents calculated distances between inventors using the cited inventors’ addresses in the year
the cited patent was obtained. For example, suppose paper i is being written in 2005. It may
be more likely to cite paper d, written in 1980 at a very distant institution, if the authors of
paper d had by 2005 moved closer to the authors of paper i, thus increasing their likelihood of
interacting around the time paper i is written. Thus, our contemporaneous distance measure
more precisely captures the geographic separation when the true knowledge flow occurs, i.e.,
when the new knowledge is created rather than at the time that the prior knowledge was created.

There is an important caveat regarding our contemporaneous distances. Location of each
mathematician is revealed from their affiliations only in the years when they publish an article.
Not surprisingly, there were many gaps in affiliation histories. As described in A.3, we fill
these gaps through interpolation and extrapolation, assuming that moves occur in the midpoint

1zbMATH describes itself as “the world’s most comprehensive and longest running ab-
stracting and reviewing service in pure and applied mathematics.” https://zbmath.org/
about/
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between the periods we observe location.

There has been a notable increase in the number of articles and authors per year; moreover,
the rate of increase seems to have accelerated from the early 2000s onwards. The number
of articles published in 1975 was 5,830, written by 5,193 different authors. The number of
articles published in 2009 was 19,699, written by 22,787 different authors. Much of this huge
expansion comes from the WOS adding 195 journals to the data base between 1975 and 2009.
Considering only the journals included in 1975, we find a 30% increase in the number of articles
and a doubling in the number of authors.

Figure A.1: Number of institutions and countries, 1975–2009
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Note: Dashed lines correspond to the count of distinct institutions (left) and countries (right)
represented in the sample of math citations obtained from entries in the Web of Science (WOS)
database. Solid lines count only within the subset of citations from and to authors included in
the Mathematics Genealogy Project (MGP).

Meanwhile, the numbers of institutions and countries represented in the WOS citation data
increase over time. Figure A.1 shows that during the period 1975–2009 the set of institutions
with citing or cited author affiliations rises to nearly 1000 (some institutions disappear) and the
corresponding number of countries rises to 71. The sample containing MGP information on
all authors starts very small but eventually represents 504 institutions located in 50 countries.
Over the whole period there are 65 citing countries and 62 cited countries with a total of 1,113
dyads with at least one citation. This number of country pairs in our analysis is unprecedented
in the citations literature, which has mainly focused on cross-metropolitan area citations within
the United States.2

2Peri (2005) and Singh and Marx (2013) include international citations but the challenge of
determining locations for individual patentees limited Peri’s sample to 18 countries, whereas
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A.2 Construction of estimating sample

Table A.2: Citation Data: Web of Science (WOS)

Citing Cited Realized
articles articles citations

Start 339,613 1,247,171 4,915,374
Study period∗ 339,613 987,056 3,665,145
Math. category journals 339,613 321,447 1,788,981
Partial affiliation data 221,908 162,457 1,044,673
Full affiliation data 187,062 133,429 749,257
Excluding self-citations 168,054 108,214 562,024
Authors at top 1000 inst. 131,347 86,536 425,399
With 5-digit MSC field 69,558 68,755 268,527
MGP data all authors 13,256 12,608 29,404

Note:∗ 1980–2009 for citing papers and 1975–2009 for cited papers.

The Web of Science data we extracted begins with 339,613 citing articles that yield a set of
nearly five million citations to over a million distinct articles. Table A.2 shows how our sample
declines to the much smaller sets (the last two rows) that we use in regressions. The first cut we
make is to limit the period of cited articles to the period 1975–2009. Absence of pre-1975 WOS
data papers reduces the set of cited articles by 21%. The WOS only identifies the first author of
the cited articles. To identify the institutional affiliation of the first author, and the identity and
affiliations of any coauthors, we matched the cited articles with our original database providing
more complete information on the citing authors. As our database is restricted to the 255
journals included in Mathematics category, we can only identify the authors and coauthors of
the cited articles belonging to this set. Only one third of the cited papers (containing about half
the citations) were published in the pure math journals included in our database.3 Inability to
obtain complete affiliation information for the citing authors and the cited authors reduces the
number of realized citations by 58% (0.75 million compared to 1.8 million). We then remove
all self-citations, that is all article pairs where any of the citing authors has the same zbMATH
author code as any of the cited authors.4 This subtracts a surprisingly high one quarter of the
realized citations.

There are 11,383 different affiliations for the citing authors and 7,722 different affiliations
for the cited authors. To keep the set of required geographic information manageable, we
select the 1000 affiliations with the highest number of citing articles. The top 1000 affiliations

Singh and Marx (2013) limit their sample to cited patents with US-resident inventors.
3The lost citations include books, book chapters, and proceedings. We also lose citations

due to spelling discrepancies.
4A.4 describes how we identified and removed self-citations.
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account for 76% of the realized citations observations (after all previous cleaning steps). Failure
to obtain a subject classification from Zentralblatt MATH further shrinks the sample of realized
citations by 37%.5

Applying the filters described above leaves us with 269 thousand realized citations to use
in our initial estimations that omit educational histories. The biggest decline in realized cita-
tions occurs when we require MGP data to be available on all authors. The 89% reduction in
realized citations in the last row of Table A.2 raises concerns that the new sample might not be
representative.

Table A.3: Comparison of means in the Web of Science (WOS) and Mathematics Genealogy
Project (MGP) samples

Only realized citations Only control citations
WOS MGP WOS MGP

mean of variables (1) (2) (3) (4)

Different institution (Distance > 0) 0.922 0.917 0.984 0.987

ln Distance | Distance > 0 7.099 6.990 7.800 7.741

Different country 0.637 0.634 0.749 0.758

Different language 0.500 0.476 0.600 0.578

Co-authors 0.099 0.090 0.019 0.014

Coincided past 0.085 0.088 0.030 0.027

Worked same place 0.049 0.048 0.029 0.030

Observations 268,527 29,404 268,527 412,388

Note: Realized citations are article pairs in which i cites d. Control Citations are articles
matched to i by citing year and 3-digit field that did not cite d.

Table A.3 displays the differences between the characteristics of realized and control cita-
tions. In line with our expectations, we see that realized citations are more likely to be at the
same university, same country, and from countries that use the same official language. Citing
authors reside on average half the distance to the nearest cited author of non-citing (control)
authors.6 In terms of ties, citing authors are many times more likely to coauthor with the (re-
alized) cited authors. They are also more than twice as likely to have worked at the same
university either at the same or different times. Since all these variables are correlated we
estimate regressions to determine the partial relationships.

Comparing columns (1) and (2) and columns (3) and (4) of Table A.3 we see that the average
characteristics of the WOS and MGP samples are very similar. Imposing the criteria that all

5We match the Zentralblatt MATH and the WOS databases using the title of the article.
6The calculation is exp(6.990 − 7.741) = 0.47 for the MGP sample and exp(7.099 −

7.800) = 0.50 for the WOS.
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citing and cited authors have MGP data leaves a much smaller sample of realized citations but it
does not seem to change the average values of the geography and ties variables in a systematic
way. The number of observations in column (4) is much higher than column (3) because the
WOS sample only contains one control per case in column (1) whereas there are on average 14
controls per case in the MGP sample.

A.3 Affiliation identification and histories

There are 536,454 author-article combinations included in our database, of which 31% lack
affiliations We recover affiliation information for many of these authors by applying the pro-
cedures developed by Tang and Walsh (2010), as implemented in Agrawal et al. (2013). For
each record without author’s affiliation we check whether there is another record with the same
author name (full surname and name or full surname and initials) with an affiliation. We assign
this latter affiliation to the missing record as long as both articles cite, at least, two articles that
are not highly cited. The low citation benchmark is set at less than 50 citations. This increases
the author-article combinations with affiliation information for some authors from 69% to 80%.
Of those, 84% have affiliations for all authors.

We impute affiliation information for years in which an author does not publish by using
his or her affiliation before or after those years. Our algorithm uses, iteratively, the closest
information relative to the information gap. For example, suppose that author A published an
article in 1990 when she was affiliated to MIT, and then published her next article in 1994 when
she was affiliated to Princeton. In this example, we have holes in the affiliation history of this
mathematician from 1991 to 1993. In the first iteration, the algorithm will fill the 1991 hole
with information from 1990 (the closest available year), and the 1993 hole with information
from 1994. After the first iteration we will still have a hole for the year 1992. We apply the
second iteration to the algorithm. In this case, the author will have a double affiliation for the
year 1992, because she has two different affiliations in the closest years (1991 and 1993).

A.4 Self-citation

To identify self-citations, we developed a unique author code that combines data from WOS,
MGP and zbMATH databases (see below). MGP and zbMATH provide the name and surname
of the authors, plus a unique author identification code. WOS only provides the surname and
initials of the author. As zbMATH identifies the author at the article level, for those articles
included in the zbMATH database, we were able to match WOS authors with zbMATH author
codes. The personnel at zbMATH also provided us with a correspondence between zbMATH
author codes and MGP author codes. For the rest of authors, we assigned a zbMATH author
code if there was only one author code for a surname+initials combination. For the remaining
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cases, we created a unique author code. To be conservative, we consider a self-citation if any of
the citing authors has the same zbMATH code as any of the cited authors; and when any citing
author has the same surname and initials of any of the cited authors.

A.5 Article-level aggregation of geography and ties

Mathematics has traditionally been characterized by more sole authorship than other fields.
The average number of authors in mathematics has risen over time7 but remains just 1.88 in
2009. In contrast, the average number of authors in evolutionary biology articles was 4 in 2005
(Agrawal et al., 2013), 3.75 in biomedical research (1961–2000), and 2.5 in physics (1991–
2000,) 2.22 in computer science (1991–2000) (Newman, 2004), and 2.19 in economics (2011)
(Hamermesh, 2013).

For multiple-author article pairs, a method for aggregating geography and ties of coauthors
must be selected. For example, suppose paper i has authors A and B, whereas the authors of
paper d are C and D. Then there are four combinations (A-C, A-D, B-C, B-D) of primitive
G and L variables (e.g. distance between A’s and C’s respective institutions or whether A was
C’s Ph.D. advisor). There are two obvious ways to aggregate and both have been employed
in prior papers. The min/max approach (used by Singh (2005) in defining past collaboration
between citing and cited inventor teams) implicitly assumes perfect information flow between
coauthors. Thus, it takes the minimal value of each measure of geographic separation (since
separation is hypothesized to reduce flows). For example, the distance between article i and
article d is defined as the minimum distance between the institutions to which citing authors
are located and the institutions to which cited authors are located. For connections, which are
hypothesized to increase flows, we use the maximal value between the author pairs. Thus the
advisor citing indicator would “turn on” if either A or B was the Ph.D. advisor of either C or
D. The min/max approach may be thought of as making the most optimistic assumption about
flows of information between members of the same author team: if one knows about a paper,
then all do.

A natural alternative is to average across the sets of bilateral relationships. The averaging
approach implicitly assumes that knowledge transfer within teams is imperfect. More linkages
therefore increase information flow. Under averaging, advisor citing would take a value of 1
only if A advised C and D and so did B. In other cases it would take fractional values. We
use min/max as our main specification because we find the binary ties and geography variables
are easier to interpret. Table D.9 shows that the averaging approach yields similar results for
geography variables but stronger coefficients for ties.

7Agrawal et al. (2016) show that Soviet-rich fields of math have seen disproportionately
large increases in coauthorship, suggesting that the integration of Soviet mathematicians has
increased the gains from collaboration by shifting out the knowledge frontier.
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B How controls for relevance affect estimates

The fixed effects in our baseline results control for the 3-digit subject field of the citing paper.
The goal is to neutralize the issue of paper relevance so as to estimate the impact of geographic
separation and ties on awareness. Table B.1 shows how the results vary as we tighten the criteria
for the subject component of the fixed effect (and the corresponding set of control observations).
The purpose is to see whether the effects of geography and ties are stable. To trim down
the number of effects to be compared across specifications, we average the coefficients of all
fourteen tie indicators. The table is organized such that the first column removes matching
based on subject altogether and instead considers a randomly selected article published in the
same year as the case observation. Not needing MSC data, the number of realized citations
rises to 47,670. We add up to 25 random controls per case, with an average of 24.5. This
number was chosen to approximately match the sample size of column (2), where the control
set comprises all other papers published in the same journal and the same year as the citing
paper. Column (3) reproduces column (5) from Table 1.

Table B.1: Sensitivity of results to alternative controls for article relevance

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Distance > 0 -0.840? -0.782? -0.571? -0.589? -0.367? -0.529?

(0.062) (0.059) (0.073) (0.073) (0.091) (0.163)

ln Dist | Dist > 0 -0.045? -0.030? -0.037? -0.034? -0.033? -0.047?

(0.007) (0.007) (0.008) (0.008) (0.010) (0.017)

Different country -0.035 -0.041 -0.090? -0.098? -0.086† -0.098
(0.027) (0.027) (0.031) (0.031) (0.041) (0.068)

Different language -0.014 0.026 -0.025 -0.020 0.007 -0.127†

(0.023) (0.023) (0.026) (0.026) (0.035) (0.054)

Average effect of ties 1.639? 1.114? 0.585? 0.570? 0.379? 0.419?

(0.048) (0.037) (0.033) (0.031) (0.034) (0.069)

Cocitation 3.277? 2.151? 1.704?

(0.057) (0.077) (0.197)
Observations 1215286 1135825 441792 441792 75926 22680
pseudo-R2 0.181 0.144 0.091 0.127 0.097 0.114

Notes: Average effect of ties refer to the mean effect of 14 (3 WOS and 11 MGP) ties.
Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by cited article
in parentheses.

The results shown in specification (1) of Table B.1 make it clear that the use of subject fixed
effects and corresponding control observations is a crucially important element of the method.
With random controls, the average coefficient on ties rises from 0.585 to 1.64. This means
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that the presence of a linkage goes from multiplying the odds of citation by 1.80 up to 5.15.
This is a statistical confirmation of what introspection would already have made obvious: our
connections are influenced by common topics of interest. Column (2) finds that an intermediate
form of matching, forcing the control to come from the same journal as the case, leads to
intermediate results for ties (implying multiplication of citation odds by three).

The fourth, fifth, and sixth specifications impose tighter controls for relevance. Column (4)
begins with a new proxy for topic similarity, cocitation. Reasoning that two articles that have
been cited together in other papers are likely to deal with related topics, we add a co-citation
dummy set equal to one if there exists a paper j that cites both i and d (and set to zero if the
papers have never appeared jointly in the reference sections of the papers in our sample). We
find this proxy for similarity in topic massively increases citation probability (factor of 26)
and inclusion of the cocitation dummy lowers the estimated network effects. However, the
reduction is minor (2%) and the network effects remain strong and statistically significant.

Column (5) of Table B.1 changes the data set by imposing that the control observation
must be a paper in the same 5-digit field as the case. At the same time the triad fixed effect
is modified to depend on the 5-digit citing subject. The cost of tighter matching is that we
now find far fewer control observations—the sample falls by 83% to 75,926 observations. The
coefficients on ties decline but the effects remain large (increasing citation odds by 46% on
average) and precisely estimated.

The final estimation of Table B.1 specifies the triad and control observations based on the
criteria of common “keywords.” This presents an even stronger cut in the availability of controls
than the 5-digit fields. The same-keywords sample has 95% fewer observations than the same
3-digit sample and 70% fewer than the same 5-digit sample. This possibly non-random attrition
seems unacceptably high. The average standard error for network effects and distance effects
almost doubles. The average coefficient on ties actually rises slightly when using the keywords
control, suggesting that finer controls would not wipe out the estimated effects of ties. Indeed,
an unavoidable trade-off emerges between tighter matching restrictions and sample size. If we
defined the subject of the citing article sufficiently narrowly, there would be no other potential
citing papers for a given cited paper. We view the 3-digit controls as hitting the “sweet spot”
between controlling adequately for relevance and retaining a full set of comparison non-citing
articles.8

Table B.2 removes the ties indicators, but is otherwise identical to Table B.1. Failure to
control for ties dramatically magnifies the estimated impact of the geography variables. Gener-

8The trade-off between fineness of comparisons and sample attrition recalls the debate be-
tween Thompson and Fox-Kean (2005) and Henderson et al. (2005). The former argued that us-
ing more detailed (6-digit) technology classes for the control sample eliminates localization of
patent citations. The counterargument was that such fine controls cause excessive non-random
reductions in the sample. Using a novel method, Murata et al. (2014) show that distance matters
even for 6-digit controls.
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Table B.2: Sensitivity of results to alternative controls for article relevance (excluding ties)

(1) (2) (3) (4) (5) (6)
Control group: nil journal MSC-3d MSC-5d keyword

Distance > 0 -1.846? -1.663? -1.243? -1.254? -0.914? -1.043?

(0.051) (0.051) (0.065) (0.065) (0.083) (0.141)

ln Dist | Dist > 0 -0.082? -0.066? -0.068? -0.066? -0.058? -0.080?

(0.006) (0.006) (0.008) (0.008) (0.010) (0.017)

Different country -0.239? -0.213? -0.232? -0.236? -0.193? -0.266?

(0.026) (0.026) (0.031) (0.031) (0.040) (0.065)

Different language -0.115? -0.052† -0.082? -0.074? -0.039 -0.159?

(0.022) (0.022) (0.026) (0.026) (0.034) (0.052)

Cocitation 3.339? 2.203? 1.670?

(0.055) (0.074) (0.192)
Observations 1215286 1135825 441792 441792 75926 22680
pseudo-R2 0.045 0.037 0.033 0.073 0.055 0.056
Notes: Significance: ?: 1%, †: 5%, ∼: 10%. Robust standard errors clustered by
cited article in parentheses.

ally speaking they are twice as large, regardless of which fixed effect for relevance is employed.
Thus we see that this key result from the baseline estimates is very robust.

C Conference Data

We draw data from the American Mathematical Society Annual Meetings over the 1990–2009
period. This conference is also known as the Joint Mathematics Meetings, since it is organized
jointly with the Mathematical Association of America. It gathers the largest number of mathe-
maticians in America, and is considered the most important annual conference in mathematics.9

For each annual meeting, we extract the information contained in the full program web
page.10 It provides the name of the presenter, the title of the paper, and the session. The full
program also identifies the special sessions’ organizers. On average, 1459 scholars participate
in the conference every year as presenters or session organizers, and 1037 papers are presented.

9Worldwide, the most important meeting is the International Congress of Mathematics, or-
ganized by the International Mathematical Union, which takes places every four years. The
winners of the Fields Medal are announced in this congress. Since the Joint Mathematics
Meetings takes place every year, and its web page provides more information about papers and
presenters, we chose this latter meeting to maximize observations.

10It can be accessed from http://www.ams.org/meetings/national/
national_past.html
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We merge the conference participation database with our citations sample using the name of
the scholar and the title of the paper as links. First, we analyze whether geographical barriers
impede participating in a conference. We pool the observations and estimate a Logit model
with year fixed effects. As shown in Table C.1-column 1, a larger distance, being located in
a different city and in a country whose official language is not English reduce the likelihood
of attending the conference. In contrast, a scholar affiliated to a Canadian university has a
higher likelihood of attending the conference. In column 2 we control for participant fixed
effects. All coefficients, except for different country, keep their sign, although distance is the
only coefficient which remains statistically significant. In columns 3 and 4, we estimate a linear
probability model. As expected, the value of the coefficients is much lower. However, results
are qualitative similar.

Table C.1: The effect of geographical barriers on the probability of attending a conference,
1990–2009 (pooled data)

(1) (2) (3) (4)
Different city -0.618? -0.158 -0.043? -0.022?

(0.216) (0.167) (0.015) (0.009)
ln Distance -0.050† -0.136? -0.002∼ -0.004?

(0.025) (0.016) (0.001) (0.000)
Different country -1.331? 0.041 -0.028? 0.001

(0.063) (0.074) (0.002) (0.002)
Participant from Canada 0.611? 0.001 0.008? -0.000

(0.080) (0.145) (0.002) (0.004)
Different language -0.060 -0.047 -0.001 -0.001

(0.074) (0.111) (0.001) (0.002)
N. obs. 667399 97867 667399 667399
Participant FE No Yes No Yes
Model Logit Logit LPM LPM

Note: ?, †, ∼ statistically significant at 1%. 5% and 10% respectively. In specifications (1) and
(3) standard errors clustered by the location of the conference and the location of the institution
in which the conference participant is affiliated. In specifications (2) and (4) standard errors
clustered by participant.

Second, we analyze whether coinciding at a conference raises the likelihood of citation. To
test this hypothesis, we build four new tie variables:

1. Some citing and cited authors coincided at a conference before the citation.

2. Some citing and cited authors coincided at a conference and session before the citation.

3. Some citing and cited author coincided at a conference where the cited paper was pre-
sented before the citation.
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4. Some citing and cited authors coincided at a conference where the citing paper was pre-
sented before the citation.

Table C.2 presents the absolute and mean values for these variables. We report data for
the realized and the control citations. All the probabilities are very low. For example, the
probability that some citing and cited authors have coincided at a conference before the citation
is 0.03, and the probability that some citing and cited author coincided at a session in the
same conference before the citation is 0.0041. Few citing or cited papers included in our
citations’ database were presented at the Joints Mathematics Meetings. For all variables, the
probabilities are larger for realized than for control citations, suggesting a positive correlation
between coinciding at a conference and citation.

Table C.2: New conference-participation tie variables. Realized vs. Control citations

Variable Total Average
Realized Control Realized Control

Citations 29,404 412,388
Coincided at a conference 918 9,895 0.0312 0.0240
Coincided at a conference and session 121 770 0.0041 0.0019
Coincided at a conference where the cited paper was presented 10 22 0.0003 0.0001
Coincided at a conference where the citing paper was presented 15 158 0.0005 0.0004

Source: Authors’ own calculations, based on Joint Meetings full programs and the citations
database.

Table C.3 presents the estimates of the baseline regression including the four new confer-
ence variables. Since conferences provide an opportunity to share information about research,
we expect all conference coefficients to be positive. As expected, both in the Logit and LPM
estimations, we find a positive and statistically significant effect for coinciding at the same
session, and coinciding at a conference where the cited paper was presented. Coinciding at a
conference is not precisely estimated, even when the citing paper was presented in it.

D Subsamples and other robustness checks

This subsection reports the findings of additional robustness checks. Our baseline table in
subsection 4.1 first shows estimates for all the authors in the WOS before restricting the sample
to papers where all the authors have MGP data. Table D.1 splits the WOS sample used in our
baseline estimates columns (1) and (2) into MGP (11%) and non-MGP (89%) subsets in order
to provide an additional check for selection bias. The coefficients on geography and career ties
in the MGP sample have confidence intervals (CI) that are wide enough to include the non-
MGP coefficients in every case except distance> 0 which lies just outside the CI. These results
provide some assurance that the MGP sample does not suffer from selection bias.
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Table C.3: Baseline regression with conference variables

(1) (2)
Logit LPM

Coincided conference -0.032 -0.003
(0.065) (0.004)

Coincided conference+session 0.423? 0.032†

(0.151) (0.013)
Coincided conference cited paper presented 2.122† 0.205†

(0.835) (0.081)
Coincided conference citing paper presented 0.083 0.012

(0.307) (0.021)
4 Geography variables YES YES
14 Ties variables YES YES
pseudo-R2 or R2 0.091 0.058
Notes: Robust standard errors clustered by cited article in parentheses.
∼p < 0.1,† p < 0.05,? p < 0.01

Table D.2 adds an indicator for No Shared Association to the set of geographic barriers
employed in Table 1. The idea is to test whether continental conference blocs might be an im-
portant omitted variable in our specification of the geography variables. There are four major
continental mathematics associations: the African Mathematical Union, the European Mathe-
matical Society, the South East Asian Mathematical Society, and the Latin American Society.
We code two papers as sharing an association if (1) any member of the citing team is located
in an institution in the same continental (or bi-national) association as any member of the cited
team, or (2) any citing author is in the same country as any cited author and that country has
a national association. No Shared Association enters significantly only in specifications that
lack full controls for distance and ties. In those cases it enters with a positive sign, which is
unexpected since the variable is coded (like the other geography indicators) in the form of a
barrier. The inclusion of No Shared Association reduces the Different Country and Different
language effects but by less than a standard error in each case.

Table D.3 shows the results obtained by re-estimating our logit regressions using the linear
probability model (LPM), employed in some studies including Belenzon and Schankerman
(2013). While the magnitudes of logit coefficients are much larger, the results are very similar
in other dimensions.11 All 51 coefficients in this table have the same sign as the corresponding
coefficient in Table 1. Significance levels are the same for 47 coefficients. In general, an effect

11The smaller size of LPM coefficients follows from the fact that they estimate marginal
effects on probabilities rather than log odds. With logit on one explanatory variable, xi, the
probability of a positive outcome is pi = (1 + exp[−βxi])−1. Differentiating by xi, we see
that blpm ≈ (1/N)

∑
i pi(1 − pi)β ≈ p̄(1 − p̄)β. In our data p̄(1 − p̄) = 0.06 so we expect

logit coefficients to be about 17 times higher than LPM coefficients. The log distance effect in
Table 1 is 18.5 times larger than the one in Table D.3.
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Table D.1: MGP vs. Non-MGP

(1) (2) (3) (4)
MGP Non-MGP MGP Non-MGP

Distance > 0 -1.209? -0.983? -1.146? -0.911?

(0.092) (0.031) (0.093) (0.032)

ln Distance -0.069? -0.074? -0.051? -0.052?

(0.009) (0.004) (0.010) (0.004)

Different country -0.166? -0.202? -0.097† -0.145?

(0.037) (0.015) (0.038) (0.015)

Different language -0.089? -0.106? -0.065† -0.066?

(0.032) (0.012) (0.032) (0.012)

Co-authors 1.799? 1.662?

(0.071) (0.022)

Coincided past 0.788? 0.704?

(0.052) (0.020)

Worked same place 0.530? 0.475?

(0.056) (0.021)
Observations 58802 478252 58802 478252
pseudo-R2 0.049 0.044 0.093 0.085
Notes: Robust standard errors clustered by cited article in parentheses.
Significance: ?: 1%, †: 5%, ∼: 10%.

that is stronger in the logit (e.g. advisor cited vs grandparent cited) is also stronger in the LPM.
Some relative magnitudes are nearly the same: The distance effect in column (5) is 54% of that
in column (3) in the logit and 50% in the LPM.

Table D.4 shows the robustness of the interaction effects to changes in the sample, specifi-
cation, and the method for constructing the three proxies for awareness gaps. In each case we
provide the interaction with log distance, the average of the three geographic barrier indicators
(different university, different country, and different language), and the average of the 13 ties
interactions.

The first robustness check is to estimate the interactions using just the career ties which
are available in the WOS sample. The point is to ensure that the interactions are not driven
by some feature of the MGP sample. The second specification is a linear probability model
(LPM). Since the LPM estimates differences in absolute risk of citation, the coefficients are
expected to be much smaller. The third specification sums all 14 ties (including grandparent
citing) and interacts them with the information proxies rather than averaging the interacting

15



Table D.2: Baseline Results with No-Shared-Association

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography:
Distance > 0 -0.905? -0.862? -1.086? -0.562?

(0.033) (0.034) (0.070) (0.078)
ln Dist | Dist > 0 -0.089? -0.063? -0.091? -0.038?

(0.004) (0.004) (0.009) (0.009)
Different country -0.247? -0.175? -0.308? -0.268? -0.094? -0.077†

(0.016) (0.016) (0.035) (0.037) (0.035) (0.037)
Different language -0.095? -0.059? -0.060† -0.080? -0.024 -0.037

(0.011) (0.012) (0.027) (0.028) (0.027) (0.028)
No shared association 0.094? 0.067? 0.143? -0.005 0.008 -0.074

(0.013) (0.014) (0.029) (0.050) (0.029) (0.051)
Ties:
Co-authors 1.672? 1.572? 1.581?

(0.021) (0.050) (0.050)
Coincided past 0.710? 0.378? 0.378?

(0.019) (0.043) (0.043)
Worked same place 0.476? 0.342? 0.339?

(0.020) (0.043) (0.043)
Share Ph.D. (5 years) 0.463? 0.457?

(0.067) (0.067)
PhD siblings 0.664? 0.665?

(0.100) (0.100)
PhD cousins 0.365? 0.364?

(0.082) (0.082)
Advisor citing 1.090? 1.079?

(0.164) (0.164)
Advisor cited 1.376? 1.375?

(0.102) (0.103)
Academic grandparent citing -0.284 -0.255

(0.392) (0.390)
Academic grandparent cited 1.028? 1.024?

(0.155) (0.154)
Academic uncle citing 0.227∼ 0.237†

(0.118) (0.118)
Academic uncle cited 0.616? 0.620?

(0.076) (0.076)
Alma Mater citing 0.238? 0.234?

(0.055) (0.055)
Alma Mater cited 0.120† 0.120†

(0.057) (0.057)
Observations 537054 537054 441792 441792 441792 441792
pseudo-R2 0.044 0.085 0.033 0.034 0.091 0.091
Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.

coefficients. Finally, the last two specifications experiment with alternative constructions of the
proxies. The “Means” specification sets binary Obscure and Recent to one when the underlying
variables are less than their means (6.02 cites and 10.73 years) rather their medians (3 and 9).
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Table D.3: Baseline Results Using LPM

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects LPM (TFE-LPM)
Sample WOS WOS MGP MGP MGP MGP

Geography:
Distance > 0 -0.313? -0.254? -0.209? -0.093?

(0.010) (0.010) (0.008) (0.008)
ln Dist | Dist > 0 -0.030? -0.021? -0.004? -0.002?

(0.001) (0.001) (0.000) (0.000)
Different country -0.086? -0.058? -0.014? -0.016? -0.004† -0.005?

(0.006) (0.006) (0.002) (0.002) (0.002) (0.002)
Different language -0.044? -0.029? -0.005? -0.005? -0.002 -0.002

(0.005) (0.005) (0.001) (0.001) (0.001) (0.001)
Ties:
Co-authors 0.509? 0.180? 0.182?

(0.005) (0.007) (0.007)
Coincided past 0.235? 0.022? 0.022?

(0.006) (0.004) (0.004)
Worked same place 0.182? 0.018? 0.018?

(0.007) (0.003) (0.003)
Share Ph.D. (5 years) 0.061? 0.061?

(0.008) (0.008)
PhD siblings 0.107? 0.107?

(0.010) (0.010)
PhD cousins 0.022? 0.022?

(0.006) (0.006)
Advisor citing 0.206? 0.205?

(0.023) (0.023)
Advisor cited 0.275? 0.274?

(0.014) (0.014)
Academic grandparent citing -0.050 -0.049

(0.050) (0.049)
Academic grandparent cited 0.118? 0.117?

(0.020) (0.020)
Academic uncle citing 0.018∼ 0.019∼

(0.011) (0.011)
Academic uncle cited 0.047? 0.047?

(0.007) (0.007)
Alma Mater citing 0.028? 0.028?

(0.006) (0.006)
Alma Mater cited 0.008 0.008

(0.006) (0.006)
Observations 537054 537054 441792 441792 441792 441792
Overall R2 0.029 0.052 0.020 0.020 0.058 0.059
Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table D.4: Robustness of interaction coefficients between ties and obscure, recent and
different-field papers.

Interaction Obscure Recent Different-field
WOS sample ln Distance -0.050? -0.006 -0.019†

Geography indicators (3) -0.117? -0.228? 0.032
Ties (13) 0.170? 0.184? 0.273?

Observations 537054 537054 275084
Pseudo-R2 0.086 0.086 0.094

LPM estimation ln Distance -0.001 -0.002? -0.001
Geography indicators (3) -0.006 -0.021? 0.004
Ties (13) 0.014† 0.029? 0.047?

Observations 441792 441792 225768
R2 0.062 0.064 0.068

Sum of ties ln Distance -0.031 -0.029∼ -0.003
Geography indicators (3) -0.070 -0.124† 0.039
Ties (14) 0.134? 0.121? 0.117?

Observations 441792 441792 225768
Pseudo-R2 0.080 0.081 0.086

Means / 3-digit field lndist -0.006 -0.033† 0.013
Geography indicators (3) -0.087 -0.090∼ -0.023
Ties (13) 0.198? 0.175? 0.179?

Observations 441792 441792 225768
Pseudo-R2 0.093 0.093 0.100

Continuous measure ln Distance -0.029 -0.079? 0.003
(see note 2) Geography indicators (3) -0.134 -0.137 -0.025

Ties (13) 0.417? 0.427? 0.124?

Observations 441792 441792 225768
Pseudo-R2 0.093 0.094 0.137

Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance:
?: 1%, †: 5%, ∼: 10%. 2. The continuous measure of field difference takes the value of
0, 1, 2 or 3, depending on whether field difference is at the 5, 3, or 2-digit level. This
specification controls for differences in 5-digit field as a base effect (since the triadic fixed
effect does not capture this). The continuous obscure and recent measures are calculated as
one minus the empirical CDFs of citations and years since publication.
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The continuous measures of obscurity and recentness are based on the empirical cumulative
distribution functions (ECDF) of citation counts and lags. Obscure and Recent are defined as
one minus the respective ECDF. This has the advantage of keeping these variables in the unit
interval. Although the tie interactions for the continuous measures of recent and obscure have
larger coefficients, the continuous formulations of these variables have about half the standard
deviations. Interaction sizes are again similar if expressed in terms of standard deviations.
Neither the mean nor the continuous reformulations have analogous transformations for the
differences in fields so we implement alternative robustness measures. In the row with means,
different field is defined as papers in different 3-digit fields (instead of 2-digit). In the row with
continuous measures we calculate the “tree-distance” in the field classification codes. Thus,
papers in the same 5-digit field have distance 0; papers in different 5-digits but same 3-digit
fields are distance 1, and so forth. In this specification it is necessary to control for the tree-
distance as well as its interactions with ties and geography.

The results of the investigation of the robustness of information interactions can be sum-
marized as follows. First, the positive ties interactions retain their strong statistical significance
across a variety of specifications. Second, with two explicable exceptions, the magnitudes of
the ties interactions are very similar. Third, the interactions with log distance and the other
geographic barrier indicators are generally negative as expected. While not uniformly negative
(5 out of the 30 reported in Table D.4 are positive), the geography/distance interactions are
negative when they differ significantly from zero.

Tables D.5 to D.8 break our sample into two periods. The main interest in this is that the
2005 to 2009 period accounts for the majority of the observations in the full sample. There are
too many results to compare individually but the exercise of splitting the sample leads to the
following conclusions. Unsurprisingly, the decline in distance effects we observe in Figure 4
also shows up in the comparison of before and after 2005. On the other hand, residing in a
different country becomes more important after 2005. The effects of ties are remarkably stable
with 25 out of 28 ties coefficients in columns (5) of Tables D.5 and D.6 being less than a
standard error from the values in Table 1. The magnitudes of some ties hardly change: advisor
cited has a coefficient of 1.396 before 2005 and 1.349 afterwards. The Table 2 finding that
ties matter more for recent and obscure papers holds up in both periods but the different-field
interaction is only statistically significant before 2005 (Tables D.7 and D.8).

Table D.9 reports the results of four additional specifications designed to explore the robust-
ness of our main results. The first specification is closely related to Figure ??. As in the figure,
we interact a “bothUS” dummy with the geography and ties variables. The big difference is
that the figure uses moving windows, whereas this regression uses the whole data. Moreover,
the table reports all the geography interactions rather than just the distance effects. The main
novel finding is that when both citing and potentially cited author teams are based in the US,
the odds of a realized citation rise by 45%. As seen in the figure, the effect of distance is near
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Table D.5: Baseline Results before 2005

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography:
Distance > 0 -0.974? -0.907? -1.087? -0.439?

(0.040) (0.042) (0.089) (0.100)
ln Distance -0.071? -0.055? -0.089? -0.060?

(0.005) (0.005) (0.010) (0.011)
Different country -0.188? -0.133? -0.166? -0.204? -0.030 -0.038

(0.019) (0.019) (0.042) (0.044) (0.043) (0.045)
Different language -0.069? -0.036† -0.057 -0.052 -0.002 -0.006

(0.016) (0.016) (0.036) (0.036) (0.036) (0.037)
Ties:
Co-authors 1.638? 1.499? 1.510?

(0.030) (0.069) (0.069)
Coincided past 0.678? 0.321? 0.318?

(0.025) (0.058) (0.058)
Worked same place 0.519? 0.349? 0.347?

(0.028) (0.059) (0.059)
Share Ph.D. (5 years) 0.302? 0.297?

(0.095) (0.095)
PhD siblings 0.685? 0.697?

(0.141) (0.141)
PhD cousins 0.349? 0.341?

(0.113) (0.113)
Advisor citing 0.938? 0.929?

(0.222) (0.222)
Advisor cited 1.394? 1.396?

(0.140) (0.140)
Academic grandparent citing -0.376 -0.362

(0.595) (0.596)
Academic grandparent cited 1.058? 1.057?

(0.223) (0.222)
Academic uncle citing 0.358† 0.368†

(0.152) (0.153)
Academic uncle cited 0.651? 0.654?

(0.106) (0.106)
Alma Mater citing 0.303? 0.289?

(0.072) (0.073)
Alma Mater cited 0.087 0.082

(0.076) (0.076)
Observations 267322 267322 177000 177000 177000 177000
pseudo-R2 0.041 0.077 0.033 0.034 0.091 0.091
Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table D.6: Baseline Results after 2005

(1) (2) (3) (4) (5) (6)
Specification: Triad-fixed-effects logit (TFE-Λ)
Sample WOS WOS MGP MGP MGP MGP

Geography:
Distance > 0 -1.043? -0.966? -1.395? -0.705?

(0.040) (0.042) (0.082) (0.092)
ln Distance -0.075? -0.049? -0.046? -0.011

(0.004) (0.005) (0.010) (0.010)
Different country -0.213? -0.150? -0.299? -0.337? -0.152? -0.168?

(0.018) (0.019) (0.041) (0.043) (0.042) (0.044)
Different language -0.137? -0.094? -0.108? -0.105? -0.048 -0.042

(0.015) (0.015) (0.034) (0.034) (0.034) (0.035)
Ties:
Co-authors 1.699? 1.630? 1.637?

(0.028) (0.063) (0.063)
Coincided past 0.742? 0.434? 0.436?

(0.025) (0.057) (0.057)
Worked same place 0.440? 0.333? 0.332?

(0.026) (0.056) (0.056)
Share Ph.D. (5 years) 0.636? 0.631?

(0.082) (0.083)
PhD siblings 0.634? 0.628?

(0.124) (0.124)
PhD cousins 0.390? 0.393?

(0.105) (0.105)
Advisor citing 1.255? 1.250?

(0.231) (0.231)
Advisor cited 1.355? 1.349?

(0.131) (0.131)
Academic grandparent citing -0.184 -0.182

(0.517) (0.511)
Academic grandparent cited 1.004? 1.001?

(0.180) (0.180)
Academic uncle citing 0.082 0.087

(0.167) (0.166)
Academic uncle cited 0.580? 0.582?

(0.096) (0.096)
Alma Mater citing 0.173† 0.172†

(0.074) (0.074)
Alma Mater cited 0.157† 0.161†

(0.075) (0.075)
Observations 269732 269732 264792 264792 264792 264792
pseudo-R2 0.048 0.092 0.033 0.034 0.092 0.092
Notes: Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table D.7: Obscure, Recent, and Different-field papers are more impacted by ties and geogra-
phy (before 2005)

(1) (2) (3) (4) (5) (6) (7)
Specification: Obscure Recent Different field

base interact base interact base interact

Geography:

Distance > 0 -0.438? -0.383? -0.400 -0.311? -0.143 -0.610? 0.072
(0.100) (0.109) (0.267) (0.164) (0.199) (0.203) (0.298)

ln Dist | Dist > 0 -0.060? -0.062? 0.017 -0.035† -0.043† -0.062? -0.008
(0.011) (0.011) (0.031) (0.016) (0.020) (0.021) (0.032)

Different country -0.030 -0.031 0.022 -0.052 0.033 0.036 0.053
(0.043) (0.046) (0.126) (0.063) (0.083) (0.080) (0.128)

Different language -0.002 0.008 -0.096 0.004 -0.016 0.011 -0.149
(0.036) (0.039) (0.100) (0.052) (0.069) (0.069) (0.100)

Ties:

Average effect of ties 0.638? 0.619? 0.208∼ 0.547? 0.156? 0.499? 0.423?

(0.027) (0.028) (0.040) (0.027) (0.050) (0.055) (0.091)
Observations 177000 177000 177000 76152
pseudo-R2 0.091 0.092 0.093 0.098
Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%,
†: 5%, ∼: 10%. 2. Average effect of ties is the mean of the base and interaction coefficients of
13 ties (3 WOS and 10 MGP). “Obscure” indicates that total citations received for this article
are less than or equal to the median number of citations received among all articles, “recent”
corresponds to citation lags less than or equal to the median, and “different field” equals 1 if
citing article and cited article belong to different 2-digit MSCs.

zero (−0.044 − 0.040 = −0.004) within the US. A surprising effect shown in this column is
that being at the same university matters more for both-US pairs, but this interaction is only
significant conditional on ties, which matter less in the US.

Column (2) replaces the min/max approach to aggregating geographic and network vari-
ables across coauthors with averages over all the author pairs. The coefficient for average effect
of ties is 28% larger (0.837 vs 0.652).12 This suggests the existence of more than one tie among

the author-pairs is reinforcing. On the other hand, the geography effects do not change much:
the continuous effect of distance is −0.041 with averaging versus −0.037 under min/max. The
overall fits of the two methods, as measured by the pseudo-R2 are almost the same (0.092 vs
0.091). The similarity in results is partly due to the fact, discussed earlier, that there is rela-
tively little coauthorship in mathematics. Column (3) measures the geographic variables at the
time the cited article was published rather than when it was cited. Thus, it does not capture
movement of the authors following the publication of the cited article. The contemporaneous

12The baseline coefficient for the average effect of ties comes from Table 2 column(1).
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Table D.8: Obscure, Recent, and Different-field papers are more impacted by ties and geogra-
phy (after 2005)

(1) (2) (3) (4) (5) (6) (7)
Specification: Obscure Recent Different field

base interact base interact base interact

Geography:

Distance > 0 -0.705? -0.729? 0.325 -0.320† -0.561? -0.946? 0.164
(0.092) (0.108) (0.207) (0.133) (0.180) (0.156) (0.240)

ln Dist | Dist > 0 -0.011 0.005 -0.085? -0.007 -0.007 0.002 0.001
(0.010) (0.012) (0.024) (0.015) (0.020) (0.018) (0.027)

Different country -0.152? -0.139? -0.082 -0.134† -0.047 -0.154† -0.012
(0.042) (0.047) (0.101) (0.058) (0.084) (0.075) (0.114)

Different language -0.048 -0.068∼ 0.098 -0.037 -0.020 -0.072 -0.026
(0.034) (0.039) (0.082) (0.047) (0.067) (0.057) (0.094)

Ties:

Average effect of ties 0.666? 0.619? 0.133† 0.534? 0.197? 0.628? 0.085
(0.022) (0.026) (0.058) (0.032) (0.051) (0.038) (0.066)

Observations 264792 264792 264792 149616
pseudo-R2 0.092 0.094 0.095 0.103
Notes: 1. Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%,
†: 5%, ∼: 10%. 2. Average effect of ties is the mean of the base and interaction coefficients of
13 ties (3 WOS and 10 MGP). “Obscure” indicates that total citations received for this article
are less than or equal to the median number of citations received among all articles, “recent”
corresponds to citation lags less than or equal to the median, and “different field” equals 1 if
citing article and cited article belong to different 2-digit MSCs.

geography used in the earlier specification leads to a similar fit (0.091 vs 0.090).The larger dis-
tance effect estimated for original geography is within a two-standard-error margin. Column (4)
vastly increases the sample size by using observations that had previously been rejected because
affiliation information or MGP data was missing for at least one of the co-authors. The distance
greater than zero and the average effect of ties coefficients are significantly smaller than in the
baseline specification. The remaining coefficients are within the two standard errors margin.
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Table D.9: Additional robustness tests

(1) (2) (3) (4)
Sample: bothUS average original available

geography author
Panel A: including ties
Distance > 0 -0.397? -0.523? -0.394? -0.459?

(0.081) (0.087) (0.073) (0.042)
× bothUS -0.575?

(0.158)
ln Dist | Dist > 0 -0.044? -0.041? -0.049? -0.031?

(0.009) (0.009) (0.007) (0.005)
× bothUS 0.040†

(0.017)
Different country -0.029 -0.144? -0.136? -0.110?

(0.039) (0.035) (0.041) (0.019)
Different language -0.007 -0.027 -0.031 -0.017

(0.027) (0.029) (0.023) (0.015)
bothUS 0.372?

(0.112)
Average effect of ties 0.639? 0.837? 0.571? 0.548?

(0.014) (0.044) (0.034) (0.018)
× bothUS -0.126?

(0.022)
Observations 441792 441792 441792 1449153
pseudo-R2 0.081 0.092 0.090 0.069

Panel B: excluding ties
Distance > 0 -1.243? -1.332? -1.043? -1.121?

(0.075) (0.076) (0.063) (0.038)
× bothUS -0.086

(0.155)
ln Dist | Dist > 0 -0.081? -0.072? -0.074? -0.059?

(0.009) (0.009) (0.007) (0.004)
× bothUS 0.054?

(0.017)
Different country -0.264? -0.324? -0.444? -0.231?

(0.039) (0.034) (0.039) (0.018)
Different language -0.074? -0.092? -0.110? -0.070?

(0.026) (0.028) (0.023) (0.015)
bothUS -0.380?

(0.093)
Observations 441792 441792 441792 1449153
pseudo-R2 0.033 0.028 0.031 0.023
Notes: Average effect of ties refer to the mean effect of 14 (3 WOS and
11 MGP) ties, except that in the first column, we use the sum of the 14
ties variables instead of average effect of ties, for the simplicity of the
interaction term with bothUS dummy. Significance: ?: 1%, †: 5%, ∼:
10%. Robust standard errors clustered by cited article in parentheses.
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Table E.1: Baseline estimation (including standard errors)

(1) (2) (3) (4) (5) (6)
Sample WOS WOS MGP MGP MGP MGP

Geography:
Distance > 0 -1.008? -0.936? -1.243? -0.571?

(0.029) (0.031) (0.065) (0.073)
ln Dist | Dist > 0 -0.073? -0.052? -0.068? Figure 2 -0.037? Figure 2

(0.003) (0.003) (0.008) (0.008)
Different country -0.198? -0.140? -0.232? -0.270? -0.090? -0.103?

(0.014) (0.014) (0.031) (0.032) (0.031) (0.033)
Different language -0.104? -0.066? -0.082? -0.079? -0.025 -0.025

(0.011) (0.012) (0.026) (0.026) (0.026) (0.027)
Ties:
Co-authors 1.672? 1.572? 1.581?

(0.021) (0.050) (0.050)
Coincided past 0.712? 0.378? 0.378?

(0.019) (0.043) (0.043)
Worked same place 0.478? 0.342? 0.339?

(0.020) (0.043) (0.043)
Share Ph.D. (5 years) 0.463? 0.457?

(0.067) (0.067)
PhD siblings 0.663? 0.666?

(0.100) (0.100)
PhD cousins 0.365? 0.362?

(0.082) (0.082)
Advisor citing 1.090? 1.079?

(0.164) (0.164)
Advisor cited 1.377? 1.375?

(0.102) (0.103)
Academic grandparent citing -0.284 -0.254

(0.392) (0.390)
Academic grandparent cited 1.028? 1.023?

(0.155) (0.155)
Academic uncle citing 0.227∼ 0.236†

(0.118) (0.118)
Academic uncle cited 0.616? 0.619?

(0.076) (0.076)
Alma Mater citing 0.239? 0.233?

(0.055) (0.055)
Alma Mater cited 0.120† 0.119†

(0.056) (0.057)
Observations 537054 537054 441792 441792 441792 441792
pseudo-R2 0.044 0.085 0.033 0.034 0.091 0.091
Robust standard errors clustered by cited article in parentheses. Significance: ?: 1%, †: 5%, ∼: 10%.
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Table E.2: Summary statistics for categories of papers included in the information mechanisms
analysis.

Obscure? Recent? Field
yes no yes no different same

# of observations 76978 364814 231929 209863 82795 142973
Avg. dist. between cites 4711 4620 4567 4712 4667 4579
Avg. # of cites 1.29 6.88 4.01 7.99 5.22 4.86
Avg. # of ties
Total 0.20 0.21 0.22 0.20 0.17 0.24
Co-authors 0.02 0.02 0.02 0.02 0.01 0.02
Coincided past 0.03 0.03 0.03 0.03 0.03 0.03
Worked same place 0.03 0.03 0.03 0.03 0.03 0.03
Share PhD (5 years) 0.01 0.01 0.01 0.01 0.01 0.01
PhD siblings 0.01 0.01 0.02 0.01 0.01 0.02
PhD cousins 0.02 0.02 0.03 0.02 0.02 0.03
Advisor citing 0.00 0.00 0.00 0.00 0.00 0.00
Advisor cited 0.00 0.01 0.01 0.01 0.01 0.01
Grandparent citing 0.00 0.00 0.00 0.00 0.00 0.00
Grandparent cited 0.00 0.00 0.00 0.00 0.00 0.00
Uncle citing 0.01 0.00 0.01 0.00 0.00 0.00
Uncle cited 0.01 0.02 0.02 0.02 0.02 0.02
Alma Mater citing 0.02 0.02 0.02 0.02 0.02 0.02
Alma Mater cited 0.02 0.02 0.02 0.02 0.02 0.02
Notes: Sample includes both realized and non-realized citations.
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